Strong-branching inequalities for convex mixed integer nonlinear programs
نویسندگان
چکیده
Strong branching is an effective branching technique that can significantly reduce the size of the branch-and-bound tree for solving Mixed Integer Nonlinear Programming (MINLP) problems. The focus of this paper is to demonstrate how to effectively use “discarded” information from strong branching to strengthen relaxations of MINLP problems. Valid inequalities such as branching-based linearizations, various forms of disjunctive inequalities, and mixing-type inequalities are all discussed. The inequalities span a spectrum from those that require almost no extra effort to compute to those that require the solution of an additional linear program. In the end, we perform an extensive computational study to measure the impact of each of our proposed techniques. Computational results reveal that existing algorithms can be significantly improved by leveraging the information generated as a byproduct of strong branching in the form of valid inequalities.
منابع مشابه
STRONG VALID INEQUALITIES FOR MIXED-INTEGER NONLINEAR PROGRAMS VIA DISJUNCTIVE PROGRAMMING AND LIFTING By KWANGHUN CHUNG A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy STRONG VALID INEQUALITIES FOR MIXED-INTEGER NONLINEAR PROGRAMS VIA DISJUNCTIVE PROGRAMMING AND LIFTING By Kwanghun Chung August 2010 Chair: Jean-Philippe. P. Richard Major: Industrial and Systems Engineering Mixed-Integer Nonlinear Progr...
متن کاملMixing mixed-integer inequalities
Mixed-integer rounding (MIR) inequalities play a central role in the development of strong cutting planes for mixed-integer programs. In this paper, we investigate how known MIR inequalities can be combined in order to generate new strong valid inequalities. Given a mixed-integer region S and a collection of valid \base" mixed-integer inequalities , we develop a procedure for generating new val...
متن کامل9811 Mixing Mixed - Integer Inequalities
Mixed-integer rounding (MIR) inequalities play a central role in the development of strong cutting planes for mixed-integer programs. In this paper, we investigate how known MIR inequalities can be combined in order to generate new strong valid inequalities. Given a mixed-integer region S and a collection of valid “base” mixed-integer inequalities, we develop a procedure for generating new vali...
متن کاملLattice-free sets, branching disjunctions, and mixed-integer programming
In this paper we study the relationship between valid inequalities for mixed-integer sets, lattice-free sets associated with these inequalities and structured disjunctive cuts, especially the t-branch split cuts introduced by Li and Richard (2008). By analyzing n-dimensional lattice-free sets, we prove that every facet-defining inequality of the convex hull of a mixed-integer polyhedral set wit...
متن کاملMixed-Integer Nonlinear Problems in Transportation Applications
We give a short introduction to mixed-integer nonlinear programming from a linear programming perspective. In this approach, all nonlinearities are approximated by linear inequalities and spatial branching, such that in the end only linear programs remain that can be solved efficiently. We present two transportation applications from rather different fields: Railway freight on one side, and nat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comp. Opt. and Appl.
دوره 59 شماره
صفحات -
تاریخ انتشار 2014